申请专栏作者 参展 行业报告
投稿发布
您的当前位置:主页 > 数据标注 > 正文

5行代码,快速实现图像分割,代码逐行详解,手把手教你处理图像

来源:可思数据 时间:2020-05-21

图像分割,作为计算机视觉的基础,是图像理解的重要组成部分,也是图像处理的难点之一。

那么,如何优雅且体面的图像分割?

5行代码、分分钟实现的库——PixelLib,了解一下。

5行代码,快速实现图像分割,代码逐行详解,手把手教你处理图像

当然,如此好用的项目,开源是必须的。

为什么要用到图像分割?

虽然计算机视觉研究工作者,会经常接触图像分割的问题,但是我们还是需要对其做下“赘述”(方便初学者)。

我们都知道每个图像都是有一组像素值组成。简单来说,图像分割就是在像素级上,对图像进行分类的任务。

图像分割中使用的一些“独门秘技”,使它可以处理一些关键的计算机视觉任务。主要分为2类:

  • 语义分割:就是把图像中每个像素赋予一个类别标签,用不同的颜色来表示。
  • 实例分割:它不需要对每个像素进行标记,它只需要找到感兴趣物体的边缘轮廓就行。

它的身影也经常会出现在比较重要的场景中:

  • 无人驾驶汽车视觉系统,可以有效的理解道路场景。
  • 医疗图像分割,可以帮助医生进行诊断测试。
  • 卫星图像分析,等等。

所以,图像分割技术的应用还是非常重要的。

接下来,我们就直奔主题,开始了解一下PixelLib,这个神奇又好用的库。

快速安装PixelLib

PixelLib这个库可以非常简单的实现图像分割——5行代码就可以实现语义分割和实例分割。

老规矩,先介绍一下安装环境

安装最新版本的TensorFlow、Pillow、OpenCV-Python、scikit-image和PixelLib:


  1. pip3 install tensorflow